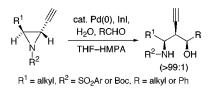
Umpolung of Chiral 2-Ethynylaziridines: Indium(I)-Mediated Stereoselective Synthesis of Nonracemic 1,3-Amino Alcohols Bearing Three Chiral Centers, Catalyzed by Palladium(0)


Hiroaki Ohno, Hisao Hamaguchi, and Tetsuaki Tanaka*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan

t-tanaka@phs.osaka-u.ac.jp

Received May 22, 2000

ABSTRACT

Treatment of 3-alkyl-2-ethynylaziridines with InI in the presence of $Pd(PPh_3)_4$ and H_2O gave allenylindium reagents bearing a protected amino group in high yields. Stereoselective addition of the allenylindium to aldehydes affords 2-ethynyl-1,3-amino alcohols bearing three chiral centers in good yields.

The N-activated or N-unactivated aziridines form a peculiar class of strained azacyclic compounds, with remarkable synthetic potential.^{1–6} Currently, aziridines bearing an alk-enyl^{7,8} or ethynyl⁹ group on one of the aziridine-ring carbon atoms have proven to be extremely useful intermediates for preparation of various types of natural and synthetic compounds. However, they serve only as electrophiles for

(1) Padwa, A.; Woolhouse, A. D. In *Comprehensive Heterocyclic Chemistry*; Lwowski, W., Ed.; Pergamon: Oxford, 1984; Vol. 7, pp 47–93.

(2) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.

(3) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693.

(4) Rayner, C. M. Synlett 1997, 11.

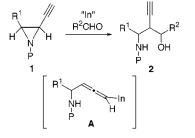
(5) Ibuka, T. Chem. Soc. Rev. 1998, 27, 145.

(6) For recent syntheses of aziridines, see: (a) Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. **1998**, *120*, 6844. (b) Ando, T.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron Lett. **1998**, *39*, 309. (c) Ohno, H.; Ishii, K.; Honda, A.; Tamamura, H.; Fujii, N.; Takemoto, Y.; Ibuka, T. J. Chem. Soc., Perkin Trans. 1 **1998**, 3703. (d) McLaren, A.; Sweeney, J. B. Org. Lett. **1999**, *1*, 1339. (e) Chuang, T.-H.; Sharpless, K. B. Org. Lett. **1999**, *1*, 1435. (f) Ohno, H.; Toda, A.; Fujii, N.; Miwa, Y.; Taga, T.; Yamaoka, Y.; Osawa, E.; Ibuka, T. Tetrahedron Lett. **1999**, *40*, 1331. (g) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Fujii, N.; Ibuka, T. J. Org. Chem. **1999**, *64*, 2992.

10.1021/ol006089v CCC: \$19.00 © 2000 American Chemical Society Published on Web 06/20/2000

carbon-carbon bond-forming reactions, except for aziridinyl anion reagents.¹⁰ One might expect that, if the ethynylaziridines 1 could be converted into a nucleophilic species such as A in Scheme 1, they would become more valuable

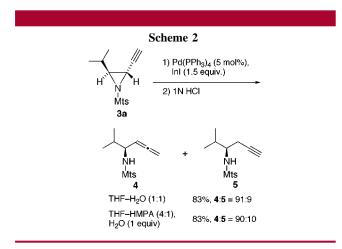
(8) (a) Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Fujii, N.; Mimura, N.; Miwa, Y.; Taga, T.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 652. (b) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno, H.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 999. (c) Ibuka, T.; Mimura, N.; Ohno, H.; Nakai, K.; Akaji, M.; Habashita, H.; Tamamura, H.; Miwa, Y.; Taga, T.; Fujii, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 2982. (d) Ohno, H.; Mimura, N.; Otaka, A.; Tamamura, H.; Fujii, N.; Ibuka, T.; Shimizu, I.; Satake, A.; Yamamoto, Y. *Tetrahedron* 1997, 53, 12933. (e) Toda, A.; Aoyama, H.; Mimura, N.; Ohno, H.; Fujii, N.; Ibuka, T. J. Org. Chem. 1998, 63, 7053. (f) Tamamura, H.; Yamashita, M.; Nakajima, Y.; Sakano, K.; Otaka, A.; Ohno, H.; Fujii, N. J. Chem. Soc., Perkin Trans. 1 1999, 2983.

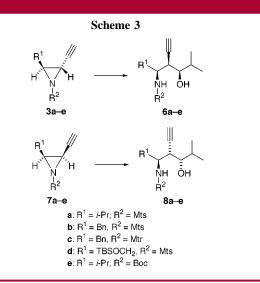

(9) (a) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Fujii, N.; Ibuka, T. *Tetrahedron Lett.* **1999**, *40*, 349. (b) Ohno, H.; Toda, A.; Fujii, N.; Takemoto Y.; Tanaka, T.; Ibuka, T. *Tetrahedron* **2000**, *56*, 2811.

2000 Vol. 2, No. 14 2161–2163

ORGANIC LETTERS

^{(7) (}a) Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org. Chem. **1990**, 55, 4683. (b) Pearson, W. H.; Bergmeier, S. C.; Degan, S.; Lin, K.-C.; Poon, Y.-F.; Schkeryantz, J. M.; Williams, J. P. J. Org. Chem. **1990**, 55, 5719. (c) Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett **1991**, 91. (d) Wipf, P.; Fritch, P. C. J. Org. Chem. **1994**, 59, 4875. (e) Davis, F. A.; Reddy, V. Tetrahedron Lett. **1996**, 37, 4349. (f) Cossy, J.; Blanchard, N.; Meyer, C. Tetrahedron Lett. **1999**, 40, 8361.




intermediates, e.g., for the synthesis of amino alcohols 2 bearing three chiral centers.

Recently, Marshall and co-workers reported pioneering work on chiral allenylindium reagents.¹¹ Thus, treatment of propargylic mesylates with InI and aldehydes in the presence of catalytic palladium(0) affords ethynyl alcohols in good to excellent stereoselectivities (45:55–95:5), via allenylindium reagents. However, it is a matter of interest to investigate the utility of ethynylaziridines as a precursor of an allenylindium reagent, the stability and reactivity of the allenylindium bearing an amino group, and regio- and stereoselectivity in both the reagent formation and addition to aldehydes. In this communication, we describe a highly stereoselective synthesis of 2-ethynyl-1,3-amino alcohols **2** by umpolung of ethynylaziridines **1** with indium(I) and a catalytic amount of palladium(0) (Scheme 1).

We initiated our study by forming the allenylindium reagent from the known 2,3-*trans*-2-ethynylaziridine **3a** (Scheme 2).¹² The desired indium reagent could not be

prepared using indium powder under various reaction conditions in the presence or absence of a palladium catalyst.

Attempted formation of allenylindium could not be realized even using one of Marshall's conditions [InI, Pd(PPh₃)₄, THF–HMPA].¹¹ After considerable experimentation using InI in various solvents such as DMF, MeOH, or THF, we found that the desired reagent can be formed using InI and a catalytic amount of Pd(PPh₃)₄ in THF–H₂O (1:1), yielding an inseparable mixture of **4** and **5** after hydrolysis (**4**:**5** = 91:9, 83%). A similar result was obtained using THF– HMPA (4:1) in the presence of 1 equiv of H₂O. It was found that H₂O is essential for the formation of the allenylindium bearing a protected amino group from 2-ethynylaziridine **3a**.

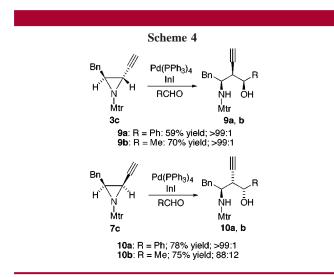
Next, the reaction of the indium reagents prepared from 2,3-*trans*-2-ethynylaziridines $3\mathbf{a}-\mathbf{e}^{12}$ with isobutyraldehyde was investigated. As shown in Scheme 3 and Table 1, the aziridines $3\mathbf{a}$ and $3\mathbf{b}$ were treated with InI (1.3 equiv) and the aldehyde (1.5 equiv) in the presence of Pd(PPh₃)₄ (5 mol %) and H₂O (1 equiv) in THF-HMPA (4:1), affording the desired amino alcohols **6a** and **6b**, respectively (entries 1 and 2). In both cases, the *syn,syn*-adduct was the only isomer

 Table 1. Synthesis of 2-Ethynyl-1,3-amino Alcohols from

 2-Ethynylaziridines^a

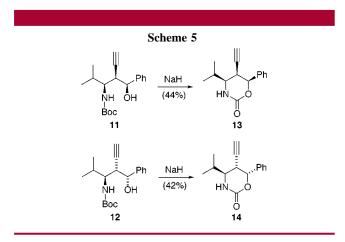
entry	aziridine	\mathbf{Pd}^{b}	solvent	product	yield ^c
entry	azii lullle	Fu ⁻	Solvent	product	yielu
1	3a	А	THF-HMPA	6a	42%
2	3b	Α	THF-HMPA	6b	62%
3	3b	Α	THF	6b	53%
4	3b	Α	THF-H ₂ O (10:1)	6b	46%
5	3b	Α	THF-H ₂ O (1:1)	6b	48%
6	3b	В	THF-HMPA	6b	61%
7	3c	Α	THF-HMPA	6c	57%
8	3d	Α	THF-HMPA	6d	68 %
9	3e	Α	THF-HMPA	6e	43%
10	7a	Α	THF-HMPA	8a	59%
11	7c	Α	THF-HMPA	8 c	62%
12	7d	Α	THF-HMPA	8d	70%
13	7e	Α	THF-HMPA	8e	45%

^{*a*} All reactions were carried out at room temperature using palladium catalyst (5 mol %), InI (1.3 equiv), H₂O (1 equiv), and isobutyraldehyde (1.5 equiv). ^{*b*} A: Pd(PPh₃)₄; B: Pd(dppf)Cl₂·CH₂Cl₂. ^{*c*} Isolated yields.

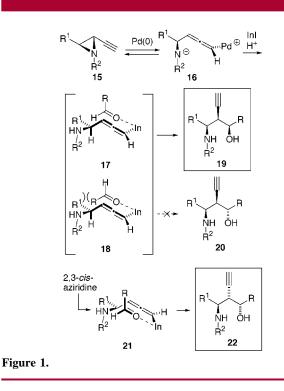

⁽¹⁰⁾ Aziridinyl anions are known to be effective precursors of highly substituted aziridines. (a) Satoh, T. *Chem. Rev.* **1996**, *96*, 3303. (b) Vedejs, E.; Kendall, J. *J. Am. Chem. Soc.* **1997**, *119*, 6941. (c) Alezra, V.; Bonin, M.; Micouin, L.; Husson, H.-P. *Tetrahedron Lett.* **2000**, *41*, 651. See also, Almena, J.; Foubelo, F.; Yus, M. *J. Org. Chem.* **1994**, *59*, 3210.

^{(11) (}a) Marshall, J. A.; Grant, C. M. J. Org. Chem. **1999**, 64, 696. (b) Marshall, J. A.; Grant, C, M, J. Org. Chem. **1999**, 64, 8214.

^{(12) (}a) Ohno, H.; Toda, A.; Fujii, N.; Ibuka, T. *Tetrahedron: Asymmetry* **1998**, *9*, 3929. (b) Ohno, H.; Toda, A.; Takemoto, Y.; Fujii, N.; Ibuka, T. *J. Chem. Soc., Perkin Trans. 1* **1999**, 2949.


isolated. Unfortunately, THF or a mixed solvent of THF– H₂O was less effective for the addition reaction toward the aldehyde (entries 3–5). Both Pd(PPh₃)₄ and Pd(dppf)-Cl₂·CH₂Cl₂ can be used for the present transformation (compare entries 2 and 6). Similarly, 2,3-*trans*-aziridines **3**c– **3e** also gave *syn,syn*-adducts **6c**–**6e** exclusively (entries 7–9). In contrast, it was found that 2,3-*cis*-2-ethynylaziridines **7a**, **7c**, **7d**, and **7e** gave *anti,syn*-adducts **8a**, **8c**, **8d**, and **8e** in >99% selectivities under identical reaction conditions (entries 10–13, Table 2). It should be noted that the allenylindium from 2,3-*trans*-2-ethynylaziridines **3a** and **3e** bearing a bulky isopropyl group showed lower reactivities toward the aldehyde, giving the corresponding amino alcohols **6a** and **6e** in relatively low yields (entries 1 and 9).

As shown in Scheme 4, the reaction of the 2,3-*trans*- and 2,3-*cis*-2-ethynylaziridines **3c** and **7c** with benzaldehyde gave


9a and **10a** exclusively. When employing acetaldehyde as an electrophile, although the 2,3-*trans*-aziridine **3c** yielded only *anti,syn*-**9b** in 70% yield, the corresponding 2,3-*cis*-aziridine **7c** gave an inseparable mixture of the diastereomeric amino alcohols **10b** (88:12) in 75% yield.¹³

Stereochemical assignments for the synthesized diastereomeric amino alcohols were readily made by their transformation into tetrahydro-1,3-oxazin-2-one derivatives as shown in Scheme 5. The amino alcohols **11** and **12**, prepared by

the reaction of the aziridine **3e** and **7e** with benzaldehyde, respectively, were treated with NaH to give the tetrahydro-1,3-oxazin-2-ones **13** and **14**. The stereochemistries of **13** and **14** were easily determined by NOE analyses.

One plausible mechanism for the present reductive coupling reaction is shown in Figure 1. Although the exact role

of H_2O is unclear, protonation of the aza-anionic species **16** by H_2O is assumed to be an important factor for the effective formation of the allenylindium reagent bearing a protected amino group.

In conclusion, we have demonstrated a novel utility of 2-ethynylaziridines as a precursor of nucleophilic reagents by umpolung with indium(I). Allenylindium reagents bearing a protected amino group were effectively formed by treatment of 2-ethynylaziridines with InI, H_2O , and catalytic Pd(0). Subsequent reaction of the indium reagents, prepared from 2,3-*trans*-2-ethynylaziridines, with aldehydes afford *syn,syn*-2-ethynyl-1,3-amino alcohols exclusively, while the reagents from 2,3-*cis*-aziridines give *anti,syn*-isomers in high selectivities.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research from the Ministry of Education, Sports, and Culture, Japan, which is gratefully acknowledged.

Supporting Information Available: Selected experimental procedures and ¹H NMR spectra for all new compounds are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006089V

⁽¹³⁾ Comparison of the NMR spectra of **9b** and both isomers of **10b** revealed that they are different from **9b**. Considering the mechanistic pathway shown in Figure 1, **10b** would be an epimeric mixture at the oxygenated carbon.